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The ‘Geographic Emission Benchmark’ model: a baseline approach to
measuring emissions associated with deforestation and degradation
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This paper proposes a new land-change model, the Geographic Emission Benchmark
(GEB), as an approach to quantify land-cover changes associated with deforestation
and forest degradation. The GEB is designed to determine ‘baseline’ activity data for
reference levels. Unlike other models that forecast business-as-usual future deforesta-
tion, the GEB internally (1) characterizes ‘forest’ and ‘deforestation’ with minimal
processing and ground-truthing and (2) identifies ‘deforestation hotspots’ using open-
source spatial methods to estimate regional rates of deforestation. The GEB also
characterizes forest degradation and identifies leakage belts. This paper compares the
accuracy of GEB with GEOMOD, a popular land-change model used in the UN-
REDD (Reducing Emissions from Deforestation and Forest Degradation) Program.
Using a case study of the Chinese tropics for comparison, GEB’s projection is more
accurate than GEOMOD’s, as measured by Figure of Merit. Thus, the GEB produces
baseline activity data that are moderately accurate for the setting of reference levels.

Keywords: deforestation; reference level; land-change modeling; accuracy assess-
ment; REDD; China

1. Introduction

In 2008, the United Nations launched REDD (United Nations Collaborative Programme
on Reducing Emissions from Deforestation and Forest Degradation in Developing
Countries) to provide a mechanism to mitigate climate change by sequestering forest
carbon. REDD also promotes the secondary ecosystem service benefits associated with
this forest conservation, including protection of biodiversity and water quality (Gibson
et al., 2011; Johnson & Lewis, 2007; Robbins, 2004; Zhang, Bennett, Kannan, & Jin,
2010). The primary objective of REDD is to establish a forest carbon market system that
results in the transfer of financing from industrialized countries to industrializing countries
that have extensive intact forests, especially in the tropics (Food and Agriculture
Organization of the United Nations [FAO], United Nations Development Programme
[UNDP], & United Nations Environment Programme [UNEP], 2008). REDD is essen-
tially a global-market-based payment-for-services system that seeks to maximize environ-
mental and financial benefits at the local, regional, and global scales (Busch, Godoy,
Turner, & Harvey, 2011; Busch et al., 2009; Economist, 2010; Phelps, Webb, & Adams,
2012).
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One of the many challenges facing REDD is the development of an accurate forest
carbon accounting methodology for the setting of baselines for monitoring at a full range
of spatial scales. For REDD implementation, setting an accurate baseline in the form of a
‘reference level’ or ‘reference emission level’ is crucial because carbon credits are based
on this estimate (Lowering Emissions in Asia’s Forests [LEAF], 2011; Verified Carbon
Standard [VCS], 2012). They are, therefore, intertwined with the financial incentives
associated with REDD (Busch et al., 2012; Herold, Verchot, Angelsen, Maniatis, &
Bauch, 2012; Sathaye, Andrasko, & Chan, 2011).

Setting these baselines requires predictive land-change modeling whereby, for example,
expected losses in forest carbon are estimated using business-as-usual scenarios of forest-
land loss (VCS, 2012). These predictive estimates are based on observed historic trends in
forest carbon loss/change. Under a business-as-usual scenario, the assumption is that
deforestation and forest degradation would continue indefinitely. This assumption can be
displayed graphically (Figure 1). In the figure, the solid line consists of two segments:
observed historic carbon emissions and predicted future carbon emissions under a business-
as-usual scenario; the latter is referred to as a reference level (i.e., RL). The dashed line
represents the target emission level at the point of REDD implementation, and the shaded
area between the two lines illustrates the carbon sequestration benefits (i.e., additionality).

In an ideal world, the necessary financial resources and technologies would be
available to develop highly accurate RLs for forests at all spatial scales, while taking
the varying land-use histories and ecosystem types into account. In many cases, however,
developing highly accurate RLs is just not feasible or realistic given the need to move
swiftly to develop deployable methodologies for forest carbon accounting. As such, there
is a need to develop an RL baseline accounting method that can relatively quickly
generate results with at least moderate accuracy. Moreover, if possible, this method

Figure 1. Concept of reference level (RL).
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would use freely available, peer-reviewed data and open-source spatial approaches to
enable accuracy and transparency.

In this paper, therefore, we propose a new land-change model for REDD. Entitled
Geographic Emission Benchmark (GEB), this model was developed with two objectives
in mind: (1) To provide the benchmark information of areal data that can be fed into RL
construction; and (2) to help address definitional and scale issues in land-change model-
ing. Essentially, the model improves estimation practices for RLs by providing a pro-
spective outcome that can be used as a baseline when one is to set an RL for a particular
REDD project. To understand the relative predictive accuracy of GEB, we compare it with
the accuracy of a popular land-change model GEOMOD using Figure of Merit by using a
case study of forest in China – Xishuangbanna Dai Autonomous Prefecture (hereafter,
Banna), southwest Yunnan.

1.1. REDD and the Verified Carbon Standard

All REDD projects need to be designed and implemented in accordance with internation-
ally accepted guidelines. Guidelines provided by Verified Carbon Standard (VCS) are the
most popular ones for REDD projects worldwide (Diaz, Hamilton, & Johnson, 2011).
VCS also validates REDD project designs; if a project is considered qualified, then the
project will be registered in the VCS Project Database, and the registration will ensure
credit generation. That is, land-change modeling for REDD implementation must adhere
to the VCS’s criteria. To guarantee the transparency of modeling outcomes, the VCS
methodology (2012) clearly mandates the need to specify ‘forest’ and ‘deforestation’ and
spatial scale when calculating the rate of deforestation.

VCS methodology (2012) uses definitions for ‘forest’ and of ‘deforestation’ from the
Global Observation of Forest and Land Cover Dynamics’ Sourcebook (GOFC-GOLD,
2010), which is largely based on definitions from the Intergovernmental Panel on Climate
Change (IPCC, 2006) and Food and Agriculture Organization of the United Nations
(FAO, 2006a, 2007). To qualify as a ‘forest (i.e., forestland)’ under GOFC-GOLD criteria,
it must be >0.05–1 ha in size, >10–30% in canopy-cover, and >2–5 m in height. ‘Other
wooded lands’ refer to the trees that do not meet this criteria. For each criterion, one value
within the range has to be chosen. This provides flexibility so that terms and definitions
can be used across a range of countries and ecosystems (GOFC-GOLD, 2010); according
to some estimates, there are more than 90 different definitions of ‘forest’ around the world
(ICRAF, 2012; Lepers et al., 2005; Ramankutty et al., 2007). ‘Deforestation’ refers to
conversion from a forest land-cover category to a non-forest land-cover category. ‘Forest
degradation’ indicates situations where forest remains in the same land-cover category, but
is degraded as measured by loss in biomass, carbon, or some other indicator.

Although providing such flexibility seems reasonable and practical, it actually hinders
a direct, global comparison of regional REDD projects, and given how REDD is geared
towards generating regional-level carbon credits that are to be traded at the global level, it
is essential to be able to readily accomplish such a comparison. Therefore, there is a need
to develop a benchmark definition of ‘forest’ so that the definition can be applied to
different regions consistently, so that the outcomes will be directly comparable. This will
enable ongoing and future REDD projects to use this benchmark definition as a reference
when comparing projects.

According to VCS methodology (2012), REDD projects need to account for spatial
complexity by specifying (a) reference region, (b) leakage belt, and (c) project area. The
reference region refers to the spatial extent of an RL and is crucial for determining the rate
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of historical deforestation for a given time period. The leakage belt refers to the area at
risk of becoming more vulnerable as a result of a potential REDD project. The project
area refers to the location and geographic scope of the actual REDD project. In terms of
specifying these components, a detailed methodology is not provided. In particular, the
reference region is not required to be specified objectively when estimating rates of
deforestation and/or forest degradation; this reference region is generally determined in
a qualitative manner. Paladino and Pontius Jr. (2004), however, point out that the size of a
reference region can affect deforestation forecasting outcomes. Brown et al. (2007)
demonstrated that different RL methodologies can produce substantially different out-
comes and that using differing reference region sizes magnified this fluctuation. They
found that for one specific study area and one time period, there could be an almost 40%
variation in terms of forest-cover change estimate due to different spatial extents and
levels of data aggregation. Similar research has been done by Soares-Filho (2012).

The importance of clearly delineating the reference region can be illustrated graphi-
cally (Figure 2). An area of forest has been partially deforested, but adjacent forests are
intact. Delineating a reference region by including these adjacent forests, as well as the
deforested areas, results in a lower rate of deforestation than if these forests were
excluded. The absolute quantity of deforestation, however, remains the same – and
problematically so. Thus, in an attempt to claim maximum carbon credits, one might be
inclined to maximize the deforestation rate by manipulating the reference region.
Determining a reference region without this in mind raises questions about the credibility
of REDD carbon credits. Therefore, this issue needs to be resolved for successful REDD
implementation.

An RL has two components: (a) data on areal change of forestland and (b) associated
forest carbon density information (Brown et al., 2007). Both are necessary to determine
carbon emissions profiles when a particular forestland is disturbed under a business-as-

Figure 2. Spatial complexity of deforestation rate calibration.
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usual scenario. Multiplying areal and density data yields information on mass, which is
expressed in terms of tonnes of carbon dioxide equivalent (tCO2e). This paper focuses
exclusively on the areal change of forestland – spatially explicit and prospective areal data
provided by land-change modeling.

1.2. GEOMOD and GEB

GEOMOD is the most frequently used land-change model for providing areal data for an
RL (Benito & Peñas 2008; Brown, 2002, 2005; Dushku & Brown, 2003; Harris, Petrova,
Stolle, & Brown, 2008; Kim, 2010; Sathaye & Andrasko, 2007a, 2007b; Sloan &
Pelletier, 2012), and this is why GEB is compared to GEOMOD. That is, the comparison
is geared towards assessing the utility of the new model with respect to the most popular
one. GEOMOD is embedded in computer programs such as Idrisi (Eastman, 2012) and
ArcGIS (Hong et al., 2012), and the details of the model are well-documented (Pontius &
Chen, 2006). Nonetheless, GEOMOD introduces uncertainty because the model, by
design, does not consider how the definition of ‘forest’ affects result outcomes, nor
does it control for the varying spatial extents (i.e., reference regions). To address these
shortcomings, GEB uses a mixed method approach to dictate business-as-usual future
deforestation (Figure 3).

GEB is a land-change model specifically geared towards REDD. Unlike GEOMOD,
GEB internally (a) characterizes basic terms such as ‘forest’ in a general sense based on
remotely sensed global data sets and (b) identifies ‘deforestation hotspots’ using a spatial
clustering technique to delineate reference regions in a data-driven manner. Another
primary objective of GEB is to produce results with moderate accuracy quickly and
with minimal processing and ground-truthing.

To characterize ‘forest’ and ‘deforestation’ and to forecast future deforestation based
on that characterization, GEB uses Globcover and Vegetation Continuous Field (VCF),

Figure 3. Structural differences between the Geographic Emission Benchmark (GEB) and
GEOMOD models.
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both of which have been pre-processed and ground-truthed (Bicheron et al., 2008;
Bontemps et al., 2011; Hansen et al., 2002, 2003), accompanied by Receiver Operating
Characteristic (ROC). In contrast, GEOMOD uses differently characterized forest/non-
forest maps, most of which require extensive pre-processing of multispectral images and
ground-truthing (Kim, 2010; Sloan & Pelletier, 2012). To measure the relative accuracy,
GEB performance is compared to GEOMOD’s, such that GEB’s characterization of
‘forest’ is used for the GEOMOD run as well.

To specify quantity, GEB employs Local Indicator of Spatial Association (LISA) in
addition to the linear extrapolation of GEOMOD. In other words, the LISA application
determines the reference region for the GEB run, while GEOMOD allows inputting a
subjectively determined reference region. In this sense, GEOMOD and GEB consider
different quantities when projecting business-as-usual forest-cover change.

GEOMOD combines spatial variables by using weighted summation to produce a
ranked ‘transition potential’ map that spatially allocates potential for deforestation and
other forest-cover changes (Eastman, Van Fossen, & Solórzano, 2005). GEB substitutes
these spatial variables with night-light imagery. GEB assigns the pixels proportional to the
night-light pixel values (i.e., ranked allocation) and randomly assigns pixels when there is
not enough variation in these values (i.e., random allocation). This approach assumes that
night-light imagery serves as a suitable proxy for the range of anthropogenic disturbances
that GEOMOD’s spatial variables are designed to capture. This night-light layer is
considered differently compared to the spatial variables used for the GEOMOD run. In
GEB, the night-light layer functions as an internal ‘null method’ that determines the pixel
allocation; therefore, by design, if the night-light layer were to be replaced by other data
sources, then the GEB is not GEB anymore. ‘Null method’ means that no calculation is
needed to produce a rank map, whereas GEOMOD calibrates numerous spatial variables
to produce a similar rank map. The concept of ‘null method’ justifies the validity of
comparing GEB and GEOMOD because the night-light layer combines various aspects of
the Earth’s surface, such as road networks and population density, when collecting and
storing night-light information through satellite-borne sensors. GEOMOD combines these
various aspects through computation; data for this are collected individually. In the end,
the night-light layer and GEOMOD’s outcome both show humans’ niche or transition
potential of deforestation in a ranked map form. In brief, both GEB and GEOMOD aim to
produce an areal outcome at a detailed scale – i.e., Tier 3, according to IPCC (2006) – in a
spatially and temporally explicit manner.

1.3. Study area

Banna prefecture in Yunnan province has experienced deforestation and forest degradation
since the 1970s (Li, Aide, Ma, Liu, & Cao, 2007; Li, Ma, Aide, & Liu, 2008; Qiu, 2009;
van Vliet et al., 2012; Xu, 2011); thus, this site is appropriate as a case study (Figure 4).
The area is about 2 million hectares in size, with elevation ranges from 0 to 1919 m (mean
elevation = 655.37 m). The latitude and longitude of the lower left and upper right of
Banna are 99.9432 E, 21.1410 N, and 101.8382 E, 22.5915 N, respectively. Banna is one
of the few tropical areas in China, and its climatic and geographical conditions are more
similar to those of Southeast Asian countries than other parts of China. At the continental
level, it is part of the Indo-Burma biodiversity hotspot (Myers, Mittermeier, Mittermeier,
da Fonseca, & Kent, 2000) and a member of Greater Mekong Subregion (Xi, 2009).
Despite many Chinese forestry and land-use policies over the past few decades (FAO,
2001, 2006b, 2010; Information Office of the State Council of the People’s Republic of
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China, 2008; Li et al., 2007, 2008; Murray & Cook, 2004; Resources for the Future [RFF]
& Center for International Forestry Research [CIFOR], 2003; Xu et al., 2006), Banna
remains vulnerable to deforestation and/or forest degradation. The area was composed of
almost largely closed-canopy tropical rainforest; by 2003, less than half of these forests
were left, including just 3.6% of old-growth tropical rainforests (Li, Ma, Liu, & Liu, 2009;
Li et al., 2007, 2008). This is equivalent to losing about 6 million tonnes of biomass every
year since 1976 (Qiu, 2009).

2. Data sources

The data used for the study area are of ‘moderate’ spatial resolution (Achard et al., 2010;
DeFries et al., 2007), with pixel sizes ranging from 90 to 1000 m resolution. All data were
resampled to 500 × 500 m. For forest-cover raster data, GEB uses Globcover and VCF.
Globcover shows forest-cover information in categorical form (Figure 5a), while the VCF
shows it in continuous form (Figure 5b) by measuring the physical amount of sunlight
penetrating layers of foliage (Hansen et al., 2003). Canopy-cover is often used as a proxy
(albeit an incomplete one) for forest-cover (Saatchi et al., 2011).

The GEB model uses night-light data from 2005 (DMSP, 2005). These data show
visible light spectra at night, and pixel values are normalized by percent length of
observation (Figure 6). For example, if light is observed only half of the night, where
this observation repeats on a daily basis (for one year), the pixel value would be 50%.
Because night-light data are considered a good proxy for human activity at the global
scale, they are increasingly popular inputs for gridded population maps – including
LandScan (Dobson, Bright, Coleman, & Worley, 2000; Oak Ridge National Laboratory

Figure 4. Map of the study areas: Banna prefecture (black) and Yunnan province (gray).
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0 50 10025
Miles

0 50 10025
Miles81

0

Vegetation Continuous Field

Forest
Non-forest

Globcover

(Unit: percent of canopy-cover)

(a)

(b)

Figure 5. (a) Globcover-based binary map of forest and non-forest and (b) Vegetation Continuous
Field (VCF) of Yunnan province as a part of the Geographic Emission Benchmark (GEB).
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[ORNL], 2008), Global Rural–Urban Mapping Project ([GRUMP]; Center for
International Earth Science Information Network [CIESIN], International Food Policy
Research Institute [IPFRI], World Bank, & Centro Internacional de Agricultura Tropical
[CIAT], 2004), and History Database of the Global Environment ([HYDE]; Goldewijk,
Beusen, & Janssen, 2010; Goldewijk, Beusen, Van Drecht, & De Vos, 2011). The data
sources for GEB are summarized in Table 1.

For the GEOMOD run, data include road, railroad, stream layers (China Historical
GIS at Harvard University [CHGIS], 2007); population maps (CIESIN et al., 2004); and
digital elevation models (USGS, 2006). Distance maps are generated based on the road,
railroad, and stream layers while slopes and aspects are produced based on the elevation
data (Figure 7). As the purpose of this paper is to forecast future deforestation under a
business-as-usual scenario using past data, post-2005 data are excluded, such as LandScan
(ORNL, 2008) or Global Digital Elevation Map ([GDEM], Ministry of Economy, Trade,

0 50 10025
Miles63

0

Night-light
(Unit: digital numbers)

Figure 6. Night-light imagery of Yunnan province for the Geographic Emission Benchmark’s
(GEB’s) spatial allocation.

Table 1. Data sources for the Geographic Emission Benchmark (GEB).

Type Spatial resolution (in meters) Temporal/spatial coverage

Globcover 300 × 300 2005–2006, 2009/Global
Vegetation Continuous Field 500 × 500 2000–2010 (annually)/Global
Night-light 1000 × 1000 1992–2010 (annually)/Global
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and Industry [METI] & National Aeronautics and Space Administration [NASA], 2011).
The data sources for GEOMOD are summarized in Table 2.

3. Methods

The process to run the GEB model and then compare the results to GEOMOD results is as
follows. First, to develop the forest-cover map, VCF and Globcover are overlaid and
assessed for similarity and for local-scale data accuracy. As only six Globcover forest

(a) Distance from deforestation (m)

28,214

0

46,878

0

448,448

0

(b) Distance from roads (m) (c) Distance from railroads (m)

28,450

0

15,919

0

(d) Distance from streams (m) (e) Population (number of people) (f) Elevation (m)

(g) Slope (°) (h) Aspect (°)

6438

0

62

0

360

0

Figure 7. Spatial variables of Yunnan province for the GEOMOD modeling’s spatial allocation. To
view this figure in colour, please see the online version of the journal.

Table 2. Data sources for the GEOMOD modeling.

Type Data format Temporal/spatial coverage

Elevation Raster (90 × 90 meters) 2000/Global
Aspect Raster (90 × 90 meters) 2000/Global
Slope Raster (90 × 90 meters) 2000/Global
Population Vector (Polygon) 1990, 1995, 2000/Global
Road Vector (Line) 1993/China
Railroad Vector (Line) 1993/China
Stream Vector (Line) 1993/China
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classes (i.e., Categories 40–100) include information of tree height, these are the only
ones considered as ‘forest’ in the GEB modeling. These forest classes (e.g., closed/open,
broad-/needle-leaved, and evergreen/deciduous) are grouped into one forest category and
identified as ‘forest’ if taller than 5 m, larger than 9 ha, and containing more than 15%
crown-cover (i.e., Globcover classes 40–100). This is a more conservative definition of
‘forest’ than the GOFC-GOLD definition and an approach similar to Grassi, Monn,
Federici, Achard, and Mollicone (2008), who argue that if an estimate for REDD projects
cannot be fully accurate, then at minimum it should be conservative. The ‘non-forest’
category includes the rest (Figure 5a). This reclassified Globcover can be used to quantify
deforestation. However, the data cannot smoothly display forest-cover heterogeneity,
which is essential for mapping forest degradation. VCF is the opposite. In VCF, the
data measure the physical amount of sunlight that penetrates layers of foliage to reach the
ground; therefore, when one solely uses VCF to define ‘forest,’ one runs a risk of
including other wooded lands or excluding relevant forests. Therefore, using Globcover
and VCF in tandem overcomes their individual limitations when characterizing ‘forest,’
‘deforestation,’ and ‘forest degradation.’

Overlaying the two data sets provides an estimate of the percent of canopy-cover
actually equivalent to the ‘forest’ threshold. To do this, the pixel count of the reclassified
Globcover ‘forest’ category is accounted, as is each VCF bin. These bins are added up
until the count is identical to the pixel count of the reclassified Globcover ‘forest’
category. If the pixel count of this category falls between two pixel counts of VCF
bins, the higher VCF value is chosen as the threshold that determines ‘forest’ in terms
of percent canopy-cover. This classification approach is in accordance with Grassi et al.
(2008).

Once ‘forest’ is characterized, change-detection analysis is performed to indicate
‘deforestation’ (i.e., forest to non-forest) at the pixel level. The deforestation pixels are
later aggregated for each county; a LISA is then used to identify statistically significant
deforestation ‘hotspots.’ In GEB, these hotspots then serve as the reference region,
whereas in the GEOMOD run, Banna prefecture serves as the reference region. For the
GEB-GEOMOD comparison, two rates of deforestation are calibrated with the same
forest-cover maps and then converted into pixels. These are then spatially allocated
using the night-light data (for GEB) and other spatial variables (for GEOMOD) in order
to produce the projected outcomes of business-as-usual forest-cover change. Finally,
Figure of Merit is used to validate the two projections with the observed forest-cover
map. We now explain these modeling steps in more detail.

3.1. Receiver operating characteristic

Since both Globcover and VCF are ground-truthed and peer-reviewed, they are consid-
ered fairly accurate at the global level. However, their global-scale data accuracy might
vary by region. The similarity and local-scale data accuracy of Globcover and VCF are
assessed using ROC. The assumption is that because both data sets are presumably
measuring the same object (i.e., forest) in an accurate manner, they should show high
similarity. For example, if the similarity of the two data sets is low for a particular region,
then their local-scale data accuracy is also considered low. ROC can assess the agreement
of the two forest-cover maps, where one map must be binary and the other one has to be
continuous. The binary map refers to the forest and non-forest map that is reclassified
from the 2005 Globcover (Figure 5a), while the continuous map indicates the 2005 VCF
(Figure 5b).
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For each threshold of the ROC, two data points (x, y) were generated; x is the
‘specificity,’ or ‘the proportion of correctly classified negative observations,’ and y is
the ‘sensitivity,’ or ‘the proportion of correctly classified positive observations’ (Robin
et al., 2011, p. 1). These data points are plotted and connected to form an ROC curve. The
sensitivity is derived from A/(A + C) while the specificity is derived from D/(B + D),
where A, B, C, and D are aggregated pixel counts of agreements and disagreements for
each threshold (Table 3). When the ROC refers to ‘relative’ operating characteristic, the
specificity is replaced by B/(B + D), that is, percent of false positive, hence resulting in the
opposite direction of the x-axis (Pontius Jr. & Schneider, 2001, p. 239).

The ROC, or more specifically the Area Under the Curve (AUC), was calculated
according to the following equation:

AUC ¼
Xn
i¼1

xi � xiþ1ð Þ � yi þ yiþ1 � yið Þ
2

� �
; (1)

where xi is the specificity for the threshold i, yi is the sensitivity for threshold i, and n + 1
is the number of thresholds. AUC ranges from 50% (i.e., no agreement) to 100% (i.e.,
perfect agreement). The ROC analysis was performed using pROC package (Robin et al.,
2011).

3.2. Change-detection analysis

To quantify the amount of change between 2000 and 2005, a pixel-level change-detection
analysis was conducted on the VCF layers. VCF’s pixels are constructed as continuous
values, so the change-detection analysis produces continuous values too. If, after change
analysis, a pixel contained a value equal to or greater than the threshold, then it was
considered ‘degraded’ rather than ‘deforested.’ Pixels initially lower than the threshold in
2000 but then exceeding it by 2005 were labeled ‘forest regrowth.’

3.3. Local indicator of spatial association

After deforestation and forest degradation were identified at the pixel level, the pixels
were aggregated for each county. Anselin’s (1995) LISAwas used to delineate hotspots of
deforestation and forest degradation. LISA identifies four forest hotspot types: High–High
(HH), High–Low (HL), Low–High (LH), and Low–Low (LL). When a county that
experiences rapid deforestation is surrounded by other bordering counties that also have
high rates of deforestation, then the county is categorized HH. The other types of hotspots
are specified based on the same logic. This type of spatial clustering seems to provide

Table 3. Receiver Operating Characteristic’s (ROC’s) contingency table.

Forest-cover map

Forest (‘1’) non-forest (‘0’) Total

VCF Forest (within threshold) A B A + B
Non-forest (otherwise) C D C + D
Total A + C B + D A + B + C + D
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useful information to guide REDD implementation. For example, HH counties, or regions,
might receive priority consideration. Areas with a minimum of 95% confidence were
considered deforestation (and forest degradation) hotspots.

LISA was calculated based on the following equation:

IY ¼ N �i �j�iwij yi � �yð Þ yj � �y
� �

�i �j�iwij

� �
�i yi � �yð Þ2 (2)

where IY represents the LISA of the variable Y that the researcher is interested in (e.g., rate of
deforestation); wij denotes an element of a spatial weight matrixW, while the element shows
a type of spatial association between locations i and j. yi indicates the variable that the
researcher is interested in at location i, and �y shows the average value of all yis for the study
area. The spatial weight matrix, W, was created using Queen’s method and only considers
first order connectivity, i.e., when county i borders county j, then ‘1’ is assigned to wij, if not
‘0.’ Lastly, N is the total number of observations. The LISA analysis was performed using
OpenGeoDa (Anselin, Syabri, & Kho, 2006).

3.4. Business-as-usual forest-cover change

To demonstrate how rates of forest-cover change vary when different reference regions are
applied, deforestation and forest degradation were calculated at the Banna prefecture and
hotspot levels using the following equation:

RDi 2000;2005ð Þ ¼
ADi 2000;2005ð Þ
AFi 2000ð Þ

(3)

where RDi(2000,2005) indicates the rate of forest disturbed between 2000 and 2005 in region i,
ADi(2000,2005) refers to the amount of forest disturbed between 2000 and 2005 in region i (in
hectares), and AFi(2000) dictates the amount of existing forest in 2000 in region i (in
hectares). The forest disturbed simultaneously indicates both deforestation and forest
degradation.

Rates were assumed to be consistent over time; therefore, the business-as-usual forest-
cover change/loss between 2005 and 2010 maintains the same rate as it did between 2000
and 2005. This assumption is identical to the logic of the linear extrapolation method in
GEOMOD modeling (Pontius & Chen, 2006).

The rates (between 2000 and 2005) calibrated at the hotspot level and prefecture level
are used to dictate the quantity of forest-cover loss (between 2005 and 2010) for the GEB
and GEOMOD, respectively. Only business-as-usual scenarios of deforestation are pro-
jected because there are no data to validate projections of forest degradation. In GEB, if
the night-light data do not have enough variation in terms of pixel values, then many
pixels may be ranked as a tie. Leftover pixels are allocated randomly after all the ranks
produced by the night-light imagery are consumed. This random spatial allocation is done
by the sp package (Pebesma & Bivand, 2012).

3.5. Figure of Merit

To compare the relative validity of the two projections under a business-as-usual scenario,
we conducted a test for Figure of Merit (FoM), which ranges from 0% to 100% (perfect
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prediction). We overlaid the observed forest-cover map of 2005, the predicted forest-cover
map of 2010, and the observed forest-cover map of 2009. We assumed the difference in
forest-cover between 2009 and 2010 to be negligible. The FoM is expressed mathemati-
cally as follows:

Figure of Merit ¼ B= Aþ Bþ Cð Þ (4)

where A is a number of pixels for ‘error due to observed change predicted as persistence’
(or misses), B is a number of pixels for ‘correct due to observed change predicted as
change’ (or hits), and C is a number of pixels for ‘error due to observed persistence
predicted as change’ (or false alarms) (Pontius et al., 2008, p. 20).

4. Results

The purpose of the range of test and model runs was to assess how well GEB works and
to measure its relative accuracy with respect to GEOMOD. First and foremost, GEB
allows the user to systematically characterize ‘forest’ and ‘deforestation’ based on the
remotely sensed forest-cover data where their definitions are similar to (and more con-
servative than) VCS’s criteria. The agreement between the binary (Globcover) and con-
tinuous (VCF) maps was an AUC of 81% (Figure 8), indicating fair accuracy in the forest-
cover maps at the Yunnan province level; that is, the estimates generated by GEB in this
case study are considered reliable. Using the GEB definition of forest, 31% of the VCF’s
pixels can be considered ‘forests.’ After the change-detection analysis, if the pixels were

100 80 60 40 20 0
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Figure 8. Area Under the Curve (AUC) of the Globcover and Vegetation Continuous Field (VCF)
as part of the Geographic Emission Benchmark (GEB).
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equal to or greater than a threshold of 54% of the canopy-cover, then these were
considered as ‘forest degradation,’ and below this, ‘deforestation.’ Pixels initially lower
than 54% in 2000 but exceeding this by 2005 were considered ‘forest re-growth.’

Figure 9 shows the development of forest-cover data by GEB in a spatially explicit
way at the Banna prefecture level. From this map, it is possible to conclude that Banna
had experienced substantial deforestation between 2000 and 2005. When the red pixels
are aggregated and quantified (Figure 9), the loss due to deforestation in Banna prefecture
is estimated to be 57,258 ha (Table 4), or an average annual loss of 11,452 ha of
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0 –9 –8 –7 –6 –5 –4 –3 –2 –1 0

Forest degradation (%)

Xishuangbanna Prefecture Deforestation Forest re-growth 0 10 205
Miles

Figure 9. Observed deforestation, forest degradation, and forest re-growth between 2000 and 2005
of Banna prefecture, as characterized by the Geographic Emission Benchmark (GEB). To view this
figure in colour, please see the online version of the journal.

Table 4. Amounts and rates of observed forest-cover loss between 2000 and 2005 at different
spatial levels.

Prefecture level Hotspot level Province level

Deforestation (observed) 57,258 ha 228,052 ha 582,399 ha
Total forest in 2000 363,610 ha 1,169,182 ha 3,639,533 ha
Deforestation rate 15.75% 19.51% 16.00%
Degradation (observed) 199,300 ha 550,487 ha 1,828,275 ha
Total forest in 2000 363,610 ha 964,175 ha 3,639,533 ha
Degradation rate 54.81% 57.10% 50.23%
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forest-cover between 2000 and 2005. This estimate of GEB is similar to that made by Li
et al. (2007), who estimated 345,423 ha of forest-cover were lost between 1976 and 2003
in Banna, or 12,793 ha annually.

Using GEB, it is also possible to objectively delineate statistically significant hotspots
of deforestation and forest degradation. Figure 10 indicates the four types of hotspots of
deforestation and forest degradation between 2000 and 2005. The hotspots are classed
based on the p-values, and darker colors indicate higher statistical significance. Gray
shows statistically insignificant relationships, based on a 95% confidence interval. Banna
prefecture has HH hotspots both in terms of deforestation and forest degradation. The
larger red hotspot of deforestation situated in southern Yunnan portrays the broader
context of deforestation underway in Banna, justifying use of the hotspot as a reference
region for the GEB run.

Table 4 shows how rates of deforestation (and of degradation) vary when different
sizes of reference regions are employed, and these varying rates of deforestation reveal
the importance of developing clear rules for determining the reference region. Quite
naturally, the rate at the hotspot level is higher (19.51%) than the rates at the prefecture
and province levels, and this is also true for degradation. When one produces an RL
without quantitatively identifying the associated hotspot of deforestation and/or degrada-
tion, but while qualitatively specifying the reference region, the resulting RL may be
underestimated.

Finally, the GEB predicts a more accurate projection than the GEOMOD run, at least
for this case study. Figure 11 shows the business-as-usual projections of deforestation by
both GEB and GEOMOD. The extent of the two maps is identical to the HH hotspot
(95%) in Figure 10. Although the GEOMOD run did not take into account this broader
spatial scale when projecting future deforestation under a business-as-usual scenario, for
the ease of comparison, the outcome of GEOMOD is also presented with the same spatial
extent. It becomes evident how these two models differ. The GEB projects business-as-
usual deforestation with the broader context in mind (including Banna, of course),
whereas GEOMOD implicitly assumes that deforestation in Banna is independent of its
adjacent areas. Measured by FoMs, the GEB turns out to have a higher predictive
accuracy (30.16%) than the GEOMOD (26.50%) when compared at the Banna prefecture
level. Thus, it does make more sense to assume the areas adjacent to Banna are experien-
cing similar deforestation and that it is important to take such context into account when
projecting a business-as-usual scenario of future deforestation.

5. Discussion

UN-REDD (2013) employs the IPCC approach of combining activity data and emission
factors to quantify GHG emissions of a particular activity such as deforestation.
According to IPCC (2006), ‘activity data’ indicates ‘[quantitative] information on the
extent to which a human activity takes place’ (1.6), while an ‘emission factor’ refers to
‘the corresponding GHG emissions per unit activity’ (Kim, 2013, p. 155). In short, GEB
produces spatially explicit and prospective activity data that can be fed into an RL to
produce an emission baseline and other useful outputs for REDD projects.

First and foremost, while there are no specific guidelines suggested by VCS to
quantitatively delineate reference regions, GEB presents a scientific method to do so.
Once a reference region is identified by GEB, REDD projects that fall into the reference
region are assumed to have the same rate of deforestation when proving their addition-
ality, where it is defined as ‘the extent to which project interventions lead to GHG benefits
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(a) Deforestation hotspots

(b) Forest degradation hotspots

0 50 10025
Miles

0 50 10025
Miles

HH LL LH HL

Not significant

p < 0.01
p < 0.05

Figure 10. Hotspots of observed deforestation and forest degradation between 2000 and 2005 of
Yunnan province as part of the Geographic Emission Benchmark (GEB). To view this figure in
colour, please see the online version of the journal.
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that are additional to business-as-usual’ (IPCC, 2000). The produced activity data,
indicating a business-as-usual future deforestation scenario, should be always reported
with the associated ROC and FoM to assure the local-scale data and modeling accuracies,
and users must keep these in mind when interpreting the results. Further, if more
sophisticated land-change models, such as CLUE-S (Verburg et al., 2002), Dynamica-
EGO (Soares-Filho et al., 2006), and Land Change Modeler (Kim, 2010; Sangermano,
Toledano, & Eastman, 2012), are to be used and accompanied with higher spatial
resolution forest-cover maps, their performance should be better than the GEB.

GEB’s estimation is moderately accurate. Moreover, when compared with estimates by
Li et al. (2007), GEB’s estimation required less processing and ground-truthing. Li et al.
(2007) used Landsat, which provides higher spatial resolution satellite images (30 × 30 m)
than Globcover (300 × 300 m) and VCF (500 × 500 m), to characterize forests and to
perform change-detection analyses. Their forest category includes tropical seasonal rain-
forests, mountainous rainforests, and subtropical evergreen broadleaf forests, while GEB
considers the forest’s biophysical characteristics regardless of their forest type. Although
the estimate made by GEB is somewhat lower than that of Li et al. (2007), we cannot
conclude that one estimate is more accurate than the other as it is not clear whether the
difference is due to different satellite images or definitions used. At least, an RL
associated with the GEB outcome will result in a land-cover change estimate by meeting
the criteria of VCS. In addition, there are potential uncertainties of using Landsat because
a pixel of Landsat imagery is equivalent to 0.09 ha, so a forest must be constituted with
6 pixels when a country’s minimum forest area is set to 0.5 ha. If there are 5 or fewer
pixels agglomerated, those pixels should not be considered a forest; thus, their transition
to other land-cover categories would not count as ‘deforestation.’

Second, it is possible to objectively identify a potential leakage belt using LISA. In
other words, if a county turns out to be a member of LH hotspots, REDD stakeholders

County border Other land-covers

Forest persistance between 2000 and 2005

Forest re-growth between 2000 and 2005

Deforestation between 2000 and 2005

Deforestation predicted between 2005 and 2010

0 20 4010
Miles

(a) Geographic Emission Benchmark (b) GEOMOD modeling

Figure 11. Business-as-usual loss of forest-cover projected by the Geographic Emission
Benchmark (GEB) and GEOMOD modeling. To view this figure in colour, please see the online
version of the journal.
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may want to pay more attention to the county because of potential leakage issues; the
county is surrounded by counties with higher deforestation rates, so it is likely the
county’s deforestation may be affected by its neighbors. The yellow polygons in Figure
10 exemplify this. While identifying leakage belts and managing them are important for
REDD to assure valid carbon sequestration activities, VCS (2010) only suggests qualita-
tive approaches to identify these belts.

Third, GEB is capable of mapping forest degradation, a crucial but sometimes
neglected component of REDD. It is well-known that accounting carbon loss due to
forest degradation is more difficult than that of deforestation (Newell & Vos, 2011, 2012).
For this reason, high-resolution data are indispensable (Asner, 2009; Asner et al., 2010),
but expensive to purchase and time-consuming to process. Given the second ‘D’ of REDD
stands for forest degradation, it appears reasonable to have, at least, a transparent estimate
of degradation that has at least moderate accuracy. Since the outcome of deforestation
appears moderately accurate, we expect the similar accuracy for degradation. GEB
provides a series of useful estimates that can be produced quickly, making it a suitable
land-change model for REDD implementation.

Although the GEB does not have a ready-made user interface, the model can be
executed via a series of open-source computer programs, namely R (www.r-project.org),
OpenGeoDa (geodacenter.asu.edu/ogeoda), and Quantum GIS (www.qgis.org). The use of
free global data sets and open source statistical computer programs that support spatial
analyses will facilitate the dissemination of the findings in this paper. In particular, REDD
stakeholders who do not have sufficient resources for conducting costly pilot studies may
find the GEB model and its outcome useful. Lastly, future GEB applications must
consider employing a newer version of VCF (DiMiceli et al., 2011) and Landsat-based
tree-cover maps (Hansen et al., 2013).

Finally, GEB proposes an alternative to address quantity, which has been found to be
the most influential variable in the prediction of carbon emissions (Gutiérrez-Vélez &
Pontius Jr., 2012; Sloan & Pelletier, 2012). It is not clear from this paper whether the
GEB’s higher accuracy is due to quantity or allocation. This limitation is also a limitation
of VCS methodology (2012) since it only requires FoM to assess the accuracy of a
prediction. The FoM is not designed to assess predictive accuracy of land-change models
by differentiating between quantity and allocation (Kim, 2010). Therefore, REDD stake-
holders must keep this limitation in mind when setting an RL. As such, producing an
accurate RL or quantifying the climate change benefits of REDD is a challenging task,
and without addressing the challenge systematically, successful REDD implementation is
unlikely.
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